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Brownian dynamics simulation of the prehistory problem
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The prehistory problem for the description of large fluctuations in a stochastic system with Gaussian white
noise is studied by means of a numerical solution of the Langevin equation. Comparison of the results with
analytical treatments provides an adequate test of the ideas underlying the concept of the optimal path.
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The description of small-amplitude equilibrium fluctua- whose maximum moves in time along the optimal path,
tions in stochastic systems is rather well established. On they,(t;X;). That is, the pre-history probability density is given
other hand, the statistical description of rare events, likéy
large-amplitude fluctuations, remains largely unexplored. o _

These improbable events are thought to be important in the Pr(X,t;X,0)=[ 27D a(t;x;)]~ Y™ X~ Xop(txp172Dor(txp),
analysis of the dynamics of physical systems with multiple @

stable points, as, for instance, in optically bistable systems % he width of the Gaussian has been expressed @& x;)

. . . s N f

n \.]osephson juctions. In recent years, the method Of_ thgo that the dispersion parametet;X;) is independent of
optimal path has proven to be very useful for the investigay,e nojse strength. The calculations of the two parameters
tion of large-amplitude fluctuations in noisy systefds-3.  characterizing the prehistory distribution, the optimal path,
In particular, the stationary distribution, the activation en-g,4 the dispersion can be carried out explicitly in some
ergy, and the mean first passage time have been discussed fQfses. In particular, for a system whose dynamics is gov-

both white and colored noise, in the limit of very small nOiseerned by the Langevin equation' in dimensionless form,
strength. The expressions obtained are based on the idea of

the existence of a most probable fluctuational path driving X(t)=—U"(x)+ &(1), 2

the system away from one of its steady points and closer to

the boundaries of its region of attraction. The predictions owhere&(t) is a Gaussian white noise with

the theory have been tested repeatedly by comparison with

numerica?/simulation§4]. P o P (€(1)=0, (&(1)é(s))=Dé(t-s), (3)
A quantity appropriate for the investig.ation of .the rare and the optimal path is given by the solution of

large excursions away from a stable point, {rehistory

probability density has been proposed by Dykman and co- )-(opt:U,(Xopt)- (4)

workers[5—7]. It can be briefly presented as follows. Let us

consider a system at equilibrium so that its one time probThe optimal path then corresponds to the deterministic tra-

ability density P;(x) does not change with time. Suppose jectory arriving at the observation timeto the pointx; after

that, as a consequence of a large fluctuation, the stochastiaving passed througk at some previous time<t;. The

variable is observed to reach, for the first time at timethe  dispersiono(t;x;) satisfies the evolution equation

valuex; away from its steady stable valug,. Then we seek _

for the probability densityp,(x,t;x;t;) that the system has o(t;xs)=2U"(x)o(t;x;)— 1, 5)

passed through a poirt intermediate betweex; andx; , at

an earlier timet<t;. We will always consider that botk ~ with the “final” condition o(t=t;;x;)=0, and where

andx; lie to the right or to the left ok, that is, we assume X=Xqp(t;X;). If the variablet is eliminated between both

that eitherxg<x<x; or X¢c>Xx>X;. Furthermore, in situa- evolution equations, we can write

tions where several stationary stable points exist, one is in-

terested in time ranges much smaller than the typical transi-

tion times between stable points, so that the final paint o (tX) = 0 (Xop(t;X¢); X1),
always lies within the same region of attraction »asnd (6)
Xst.
The prehistory distribution can be formally expressed in e V=TT 2fo / -3
terms of a path integral representation, whose explicit evalu- o) =[U"(X)] X dyLur 1=

ation requires, in general, some type of approximation. Dyk-

man and co-workerE5,7] expressed the prehistory distribu- Notice that because of the conditions mentioned above,
tion as the solution of a pertinent variational problem. In theU’(y) #0 for any point inside the integration interval. If the
limit of small noise intensities, it is found to be a Gaussianpotential U(x) has several stable points, the dispersion
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a(X;X;) shows a nonmonotonous behavior whgries near  which shows that for Markov systems with detailed balance,
an unstable poink,,, where the potential presents a local the prehistory distribution for timetsprior to the final obser-
maximum. The nonmonotony is more pronounce&agets  vation timet=t; can be found from a knowledge of the
closer to the instability point. Dykmaet al.[5] also carried  forward conditional probability densityw,;(x,[t—t|[X;).
out analog experiments to analyze the dynamics of largés this function satisfies a Fokker-Planck equation, any of
fluctuations. Although the analytical description matches theéhe proposed approximation schemgsimulant expansion
experimental findings at a qualitative level, there are som¢ll], van Kampen’'s noise strength expansifi?], etc)
discrepancies which deserve further attention. which provide a good description of the conditional prob-
The formulation of the theory requires the strength of theability during the time range of interegite., times smaller
noise to be sufficiently small compared to the deterministichan the jump time between stable pojntan be used to
force acting on the system during the duration of the fluctuaconstruct the prehistory distribution. In this work, we will
tion. If the end point; is very far from the stable point, the make use of the above relation to develop an efficient and
probability of such a fluctuation is very small and very dif- reliable numerical solution.
ficult to observe experimentally. Thus, to observe these large A way to proceed to compute the prehistory distribution
fluctuations, one is forced to use in the analog experimentBom the Langevin equation is to generate very many sto-
noise intensities which are not sufficiently small. Then finitechastic trajectories, starting from a set of initial values dis-
size effects in the experimental observations have to be takdnbuted according to the equilibrium distribution. Then the
into account when comparing with the theoretical predictiongprehistory distribution is constructed by registering the paths
[5,9]. It seems desirable to have numerical results obtained ithat pass through at timest before reaching the desired end
the limit of very small noise strengths, with which the ideaspoint x; at t;. This direct procedure is practical as long as
of the optimal path could be tested. This is one of the motithe end point is not too far from the stable point. If the

vations of the present work. fluctuation is very large, one faces the same kind of troubles
The pre-history probability density can also be expresseds in the analog experiments. That is, the observation of
in terms of ratio of transition probabilities §5,8] large fluctuations for small noise strengths requires the gen-

eration of an exceedingly large number of trajectories. On
the other hand, if the noise intensity used in the simulation is
increased so that the probability of observing a large fluctua-
ECRRARIAN 7) tion is large enough, the limits of applicability of the analyti-
Po(Xi ,t ;X ,t5) t_H_m' cal theory are violated. The noise term and the systematic
' force are then of comparable strength when a trajectory gets
close to an unstable poir},,, and finite noise effects have to
where P,(X; ,t; ;X ,t5) and P5(x; ,ti;Xx,t;X;s,t5) are, respec- be taken into consideration.
tively, the two- and three-time joint probability densities for  The property mentioned above, E4.0), can be used to
timest; <t<t;, of the stochastic proces$t), and where the implement the simulation for the observation of large-
particularization fort;— — indicates that the system was amplitude fluctuations with a small enough noise strength.
prepared in some staxein the far past and then, at any finite Instead of waiting for the system to reach the end point, we
time like t or t;, we will find it at equilibrium. Expressing start the evolution from an initial state located at the end
the joint probability densitied?, and P5 for a stationary pointX;. Then, we generate trajectories starting framat
Markov process in terms of conditional probability densities,t;=0, and let the system evolve in time. The construction of
we can write the prehistory distribution from the stochastic trajectories is
straightforward. The noise intensiy is chosen such that

ph(X,t;Xf !tf) =

P4x 1o ' ' 02
(X6 Xs 1) = Sego~ Wi (Xs, L= tX), (8 “
P falf P(x;) 1)1(Xs b |

-0.4

-0.6

where P{9 represents the one-time equilibrium distribution 08 r =
andwy1(X; ,ty—t|x) the conditional probability density for o 6l t
the system to reach the valug at timet;—t if it was atx
initially. Furthermore, if the system satisfies the detailed bal- 0.4
ance conditior 10]
02}
O L 1 1 1
PI )W 2 (Xs b= t]X) =Wy (Xt = t{x1) P1YX¢),  (9) -1 08 06 04 02 0

<X>

FIG. 1. Dispersion parameter of the prehistory distribution as a
function of(x). The dotted line represents the numerical results for
D=0.002 andx;=—0.3. The solid line corresponds to the analyti-
cal results. Inset: the optimal path. The numerical results and those
Pr(X, X ,tg) =Wy (X, [t =t [xp) (t<tf) (100 predicted by Eq(4) are identical within the scale of the plot.

we can immediately write
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FIG. 2. The same as in Fig. 1, but for a fluctuation with end FIG. 3. The same as in Fig. 1, but for a fluctuation with end
point much closer to the unstable point, i.&,=—0.001 and point,x;=—1.8 andD=10*.
D=10%

stable point, it remains in that neighborhood for a long time.

|xun— X¢|>D2. This condition guarantees the validity of the The nonmonotony of the dispersion parameter is also more
optimal path approximation during the time evolution of in- pronounced, as expected from the predictions of the optimal
terest(i.e., times smaller than the transition time¥hus a  path theory.
comparison between theory and simulations is feasible with- The condition for nonmonotony of the dispersion can be
out any finite size noise corrections. It should be pointed oubbtained by requiring that, in the interval of values of
that our procedure allows us to analyze the problem withtconsidered, the dispersion has a maximum. Then it follows
very little computational effort. A few thousand trajectories from Eq. (6), that, in order to observe a maximum, there
provide good enough statistics for the averages. must be a solution of the equation

Following a standard proceduf&3], we numerically in-
tegrated the Langevin equation for the symmetric bistable
potential U(x) = —x?/2+ x*/4 considered in5]. The time
behavior of the average positigm) corresponds to optimal o(X;X) =
path satisfying Eq(4). The dispersion parameter defined
aso=((x?)— ((x))?)/D is to be compared witbr(x;X;) ob-
tained with the optimal path method, E@). for some valuex in the interval &g,X;). For the symmetric

In Fig. 1, we plot the behgwor of th_e d|sperS|qn parar‘matermonostable potentidl (x) =x2/2+ x*/4, there is no solution
vs (x), as well as(see the insgtthe time evolution of the

: _ L of Eq. (11) for any end point.Thus, the dispersion is always
average fo_r a noise strength—_0.00Z a.ndxf.— 0.3. The_ monotonous. This is also the case for the bistable potential if
time evolution of this last quantity obtained in the numerical

solution is indistinguishable from the optimal path. It is in- the end point<xy. In Fig. 3, we show the behavior for

1 . - _ —10-4
teresting to note that the finite jump in the average positior;[hese types of final conditionsx(=~1.8, D=10 ). In

neart=0 observed in the analog experimefdge the inset contrast with the previous cases, the average very quickly
in Fig. 1 of[5]) is not present here, as this is a firdesffect. reaches its steady value, and the dispersion shows a mono-

The nonmonotonous behavior of the dispersion parameter fonic behavior. Thus the monotony or nonmonotony of the

also clearly seen. The agreement between the numerical rg’lspersion is related to the condition given in Egl). In
y seen. 9 . o . 5articular, the behavior of the dispersion can be nonmonoto-
sults (dotted ling and the analytical approximatio¢solid

line) is excellent, In Fig. 2, we present the results for a cas nous for asymmetric monostable potentials. We are presently
- N Fg. 2, P . %arrying out a more extensive analysis of this feature for
where the end point; is much closer to the unstable point

~0. Th . ¢ th has 1o b Il in ord tcpotentials other than the ones considered here.
Xu= 7. ThE NOISe strength has 1o be very small in order In conclusion, we believe that our calculation provides an
satisfy the c_ondltlons under_ which the optimal pat_h approad%{dequate numerical test to the ideas of the optimal path. The
to the prehistory problem is formulated. In partlcqlar, ON€,ocedure followed here relies in the use of the properties of
has to guarantee that the strength of the stoc_hast|c force arkov processes supporting detailed balance. We have also
small compared to that of the systematic term in the I“"‘nge('axplored the influence on the dynamics of the location of
vin equation. If this condition is violated, the probability of : . . . i
trajectories crossing the unstable point is not negligible, and, Wl.th respect o the S|.ngular poist of th_e poten.t|al-dur_|ng

| g th point 1 glgib'e, e time scale appropriate for the pre-history distribution.
consequently, there will be paths arriving at poxatafter

crossing the unstable point. These paths are not contemplatede acknowledge Professor M. I. Dykman, Professor P. V.
in the formulation of the prehistory problem. The inset againE. McClintock, and Professor N. D. Stein for their very use-
shows the time behavior of the average position. Notice thafiul suggestions and comments. This work was supported by
the time scale of the evolution is now longer than in thethe Direccim General de InvestigagioCientfica y Tecnica
previous case. Also, when the optimal path is near the unef Spain(Project No. PB95-0536
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