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Brownian dynamics simulation of the prehistory problem

M. Morillo, J. M. Casado, and J. Go´mez-Ordo´ñez
Universidad de Sevilla, Fı´sica Teo´rica, Apartado Correos 1065, Sevilla 41080, Spain

~Received 13 September 1996!

The prehistory problem for the description of large fluctuations in a stochastic system with Gaussian white
noise is studied by means of a numerical solution of the Langevin equation. Comparison of the results with
analytical treatments provides an adequate test of the ideas underlying the concept of the optimal path.
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PACS number~s!: 05.40.1j, 02.50.2r
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The description of small-amplitude equilibrium fluctu
tions in stochastic systems is rather well established. On
other hand, the statistical description of rare events,
large-amplitude fluctuations, remains largely unexplor
These improbable events are thought to be important in
analysis of the dynamics of physical systems with multi
stable points, as, for instance, in optically bistable system
in Josephson juctions. In recent years, the method of
optimal path has proven to be very useful for the investi
tion of large-amplitude fluctuations in noisy systems@1–3#.
In particular, the stationary distribution, the activation e
ergy, and the mean first passage time have been discusse
both white and colored noise, in the limit of very small noi
strength. The expressions obtained are based on the id
the existence of a most probable fluctuational path driv
the system away from one of its steady points and close
the boundaries of its region of attraction. The predictions
the theory have been tested repeatedly by comparison
numerical simulations@4#.

A quantity appropriate for the investigation of the ra
large excursions away from a stable point, theprehistory
probability density, has been proposed by Dykman and c
workers@5–7#. It can be briefly presented as follows. Let
consider a system at equilibrium so that its one time pr
ability densityP1(x) does not change with time. Suppo
that, as a consequence of a large fluctuation, the stoch
variable is observed to reach, for the first time at timet f , the
valuexf away from its steady stable valuexst . Then we seek
for the probability densityph(x,t;xf t f) that the system ha
passed through a pointx, intermediate betweenxst andxf , at
an earlier timet,t f . We will always consider that bothx
andxf lie to the right or to the left ofxst, that is, we assume
that eitherxst,x,xf or xst.x.xf . Furthermore, in situa-
tions where several stationary stable points exist, one is
terested in time ranges much smaller than the typical tra
tion times between stable points, so that the final pointxf
always lies within the same region of attraction asx and
xst .

The prehistory distribution can be formally expressed
terms of a path integral representation, whose explicit ev
ation requires, in general, some type of approximation. D
man and co-workers@5,7# expressed the prehistory distribu
tion as the solution of a pertinent variational problem. In t
limit of small noise intensities, it is found to be a Gaussi
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whose maximum moves in time along the optimal pa
xopt(t;xf). That is, the pre-history probability density is give
by

ph~x,t;xf ,0!5@2pDs~ t;xf !#
21/2e2[x2xopt~ t;xf !]

2/2Ds~ t;xf !.
~1!

The width of the Gaussian has been expressed asDs(t;xf)
so that the dispersion parameters(t;xf) is independent of
the noise strength. The calculations of the two parame
characterizing the prehistory distribution, the optimal pa
and the dispersion can be carried out explicitly in so
cases. In particular, for a system whose dynamics is g
erned by the Langevin equation, in dimensionless form,

ẋ~ t !52U8~x!1j~ t !, ~2!

wherej(t) is a Gaussian white noise with

^j~ t !&50, ^j~ t !j~s!&5Dd~ t2s!, ~3!

and the optimal path is given by the solution of

ẋopt5U8~xopt!. ~4!

The optimal path then corresponds to the deterministic
jectory arriving at the observation timet f to the pointxf after
having passed throughx at some previous timet,t f . The
dispersions(t;xf) satisfies the evolution equation

ṡ~ t;xf !52U9~x!s~ t;xf !21, ~5!

with the ‘‘final’’ condition s(t5t f ;xf)50, and where
x5xopt(t;xf). If the variable t is eliminated between both
evolution equations, we can write

s~ t;xf ![s„xopt~ t;xf !;xf…,
~6!

s~x;xf !5@U8~x!#2E
x

xf
dy@U8~y!#23.

Notice that because of the conditions mentioned abo
U8(y)Þ0 for any point inside the integration interval. If th
potential U(x) has several stable points, the dispersi
1521 © 1997 The American Physical Society
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s(x;xf) shows a nonmonotonous behavior whenxf lies near
an unstable pointxun, where the potential presents a loc
maximum. The nonmonotony is more pronounced asxf gets
closer to the instability point. Dykmanet al. @5# also carried
out analog experiments to analyze the dynamics of la
fluctuations. Although the analytical description matches
experimental findings at a qualitative level, there are so
discrepancies which deserve further attention.

The formulation of the theory requires the strength of
noise to be sufficiently small compared to the determinis
force acting on the system during the duration of the fluct
tion. If the end pointxf is very far from the stable point, th
probability of such a fluctuation is very small and very d
ficult to observe experimentally. Thus, to observe these la
fluctuations, one is forced to use in the analog experime
noise intensities which are not sufficiently small. Then fin
size effects in the experimental observations have to be ta
into account when comparing with the theoretical predictio
@5,9#. It seems desirable to have numerical results obtaine
the limit of very small noise strengths, with which the ide
of the optimal path could be tested. This is one of the m
vations of the present work.

The pre-history probability density can also be expres
in terms of ratio of transition probabilities as@5,8#

ph~x,t;xf ,t f !5S P3~xi ,t i ;x,t;xf ,t f !

P2~xi ,t i ;xf ,t f !
D
t i→2`

, ~7!

whereP2(xi ,t i ;xf ,t f) and P3(xi ,t i ;x,t;xf ,t f) are, respec-
tively, the two- and three-time joint probability densities f
timest i,t,t f , of the stochastic processx(t), and where the
particularization fort i→2` indicates that the system wa
prepared in some statexi in the far past and then, at any finit
time like t or t f , we will find it at equilibrium. Expressing
the joint probability densitiesP2 and P3 for a stationary
Markov process in terms of conditional probability densitie
we can write

ph~x,t;xf ,t f !5
P1
eq~x!

P1
eq~xf !

w1u1~xf ,t f2tux!, ~8!

whereP1
eq represents the one-time equilibrium distributio

andw1u1(xf ,t f2tux) the conditional probability density fo
the system to reach the valuexf at time t f2t if it was at x
initially. Furthermore, if the system satisfies the detailed b
ance condition@10#

P1
eq~x!w1u1~xf ,t f2tux!5w1u1~x,t f2tuxf !P1

eq~xf !, ~9!

we can immediately write

ph~x,t;xf ,t f !5w1u1~x,ut2t f uuxf !~ t,t f ! ~10!
l
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which shows that for Markov systems with detailed balan
the prehistory distribution for timest prior to the final obser-
vation time t5t f can be found from a knowledge of th
forward conditional probability densityw1u1(x,ut2t f uuxf).
As this function satisfies a Fokker-Planck equation, any
the proposed approximation schemes~cumulant expansion
@11#, van Kampen’s noise strength expansion@12#, etc.!
which provide a good description of the conditional pro
ability during the time range of interest~i.e., times smaller
than the jump time between stable points! can be used to
construct the prehistory distribution. In this work, we w
make use of the above relation to develop an efficient
reliable numerical solution.

A way to proceed to compute the prehistory distributi
from the Langevin equation is to generate very many s
chastic trajectories, starting from a set of initial values d
tributed according to the equilibrium distribution. Then th
prehistory distribution is constructed by registering the pa
that pass throughx at timest before reaching the desired en
point xf at t f . This direct procedure is practical as long
the end point is not too far from the stable point. If th
fluctuation is very large, one faces the same kind of troub
as in the analog experiments. That is, the observation
large fluctuations for small noise strengths requires the g
eration of an exceedingly large number of trajectories.
the other hand, if the noise intensity used in the simulation
increased so that the probability of observing a large fluct
tion is large enough, the limits of applicability of the analy
cal theory are violated. The noise term and the system
force are then of comparable strength when a trajectory
close to an unstable pointxun, and finite noise effects have t
be taken into consideration.

The property mentioned above, Eq.~10!, can be used to
implement the simulation for the observation of larg
amplitude fluctuations with a small enough noise streng
Instead of waiting for the system to reach the end point,
start the evolution from an initial state located at the e
point xf . Then, we generate trajectories starting fromxf at
t f50, and let the system evolve in time. The construction
the prehistory distribution from the stochastic trajectories
straightforward. The noise intensityD is chosen such tha

FIG. 1. Dispersion parameter of the prehistory distribution a
function of ^x&. The dotted line represents the numerical results
D50.002 andxf520.3. The solid line corresponds to the analy
cal results. Inset: the optimal path. The numerical results and th
predicted by Eq.~4! are identical within the scale of the plot.
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uxun2xf u.D1/2. This condition guarantees the validity of th
optimal path approximation during the time evolution of i
terest~i.e., times smaller than the transition times!. Thus a
comparison between theory and simulations is feasible w
out any finite size noise corrections. It should be pointed
that our procedure allows us to analyze the problem w
very little computational effort. A few thousand trajectori
provide good enough statistics for the averages.

Following a standard procedure@13#, we numerically in-
tegrated the Langevin equation for the symmetric bista
potentialU(x)52x2/21x4/4 considered in@5#. The time
behavior of the average position^x& corresponds to optima
path satisfying Eq.~4!. The dispersion parameters defined
ass5(^x2&2(^x&)2)/D is to be compared withs(x;xf) ob-
tained with the optimal path method, Eq.~6!.

In Fig. 1, we plot the behavior of the dispersion parame
vs ^x&, as well as~see the inset! the time evolution of the
average for a noise strengthD50.002 andxf520.3. The
time evolution of this last quantity obtained in the numeric
solution is indistinguishable from the optimal path. It is i
teresting to note that the finite jump in the average posit
neart50 observed in the analog experiments~see the inset
in Fig. 1 of @5#! is not present here, as this is a finiteD effect.
The nonmonotonous behavior of the dispersion paramet
also clearly seen. The agreement between the numerica
sults ~dotted line! and the analytical approximation~solid
line! is excellent. In Fig. 2, we present the results for a c
where the end pointxf is much closer to the unstable poi
xun50. The noise strength has to be very small in order
satisfy the conditions under which the optimal path appro
to the prehistory problem is formulated. In particular, o
has to guarantee that the strength of the stochastic forc
small compared to that of the systematic term in the Lan
vin equation. If this condition is violated, the probability o
trajectories crossing the unstable point is not negligible, a
consequently, there will be paths arriving at pointxf after
crossing the unstable point. These paths are not contemp
in the formulation of the prehistory problem. The inset ag
shows the time behavior of the average position. Notice
the time scale of the evolution is now longer than in t
previous case. Also, when the optimal path is near the

FIG. 2. The same as in Fig. 1, but for a fluctuation with e
point much closer to the unstable point, i.e.,xf520.001 and
D51028.
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stable point, it remains in that neighborhood for a long tim
The nonmonotony of the dispersion parameter is also m
pronounced, as expected from the predictions of the opti
path theory.

The condition for nonmonotony of the dispersion can
obtained by requiring that, in the interval of values ofx
considered, the dispersion has a maximum. Then it follo
from Eq. ~6!, that, in order to observe a maximum, the
must be a solution of the equation

s~x;xf !5
1

2U9~x!
~11!

for some valuex in the interval (xst,xf). For the symmetric
monostable potentialU(x)5x2/21x4/4, there is no solution
of Eq. ~11! for any end point.Thus, the dispersion is alwa
monotonous. This is also the case for the bistable potenti
the end pointxf,xst. In Fig. 3, we show the behavior fo
these types of final conditions (xf521.8, D51024). In
contrast with the previous cases, the average very quic
reaches its steady value, and the dispersion shows a m
tonic behavior. Thus the monotony or nonmonotony of t
dispersion is related to the condition given in Eq.~11!. In
particular, the behavior of the dispersion can be nonmono
nous for asymmetric monostable potentials. We are prese
carrying out a more extensive analysis of this feature
potentials other than the ones considered here.

In conclusion, we believe that our calculation provides
adequate numerical test to the ideas of the optimal path.
procedure followed here relies in the use of the propertie
Markov processes supporting detailed balance. We have
explored the influence on the dynamics of the location
xf with respect to the singular point~s! of the potential during
the time scale appropriate for the pre-history distribution.
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E. McClintock, and Professor N. D. Stein for their very us
ful suggestions and comments. This work was supported
the Dirección General de Investigacio´n Cientı́fica y Técnica
of Spain~Project No. PB95-0536!.

FIG. 3. The same as in Fig. 1, but for a fluctuation with e
point, xf521.8 andD51024.
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